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SECTION 1
INTRODUCTION

The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope
Structural Design Study was to investigate the feasibility of designing an ultra-
lightweight 1-m aperture system within optical performance requirements and mass
budget constraints. This study uses the results from our previous studies on LUTE
as a basis for further developing the LUTE structural architecture.

After summarizing our results in Section 2, Section 3 begins with the overall logic
we used to determine which telescope “structural form” should be adopted for fur-
ther analysis and weight estimates. Specific telescope component analysis showing
calculated fundamental frequencies and how they compare with our derived re-
quirements are included. “First-order” component stress analyses to ensure tele-
scope optical and structural component (i.e. mirrors & main bulkhead) weights are
realistic are presented. Layouts of both the primary and tertiary mirrors showing
dimensions that are consistent with both our weight and frequency calculations also
form part of Section 3.

Section 4 presents our calculated values for the predicted thermally induced pri-
mary-to-secondary mirror despace motion due to the large temperature range over
which LUTE must operate. Two different telescope design approaches (one which
utilizes fused quartz metering rods and one which assumes the entire telescope is
fabricated from beryllium) are considered in this analysis. We bound the secondary
mirror focus mechanism range (in despace) based on these two telescope
configurations.

In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope
Assembly) via an “exploded view” of the sub-system. The “exploded view” is anno-
tated to help aid in the understanding of each sub-assembly. We also include a two
view layout of the UVTA from which telescope and telescope component dimen-
sions can be measured.

We conclude our study with a set of recommendations not only with respect to the
LUTE structural architecture but also on other topics related to the overall feasibility

of the LUTE telescope sub-system.
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SECTION 2
SUMMARY OF RESULTS

Based on this and the previous LUTE study, we remain convinced that the ability to
design, build, test and successfully launch and operate a 1-meter class diffraction
limited telescope operating over a large temperature range appears to be feasible.
The major thrust of this study was to show that the telescope structural form or
warchitecture” could meet its weight and frequency allocation while still meeting its
optical performance requirements. We have shown the weight and frequency re-
quirements to be achievable by fabricating the telescope from beryllium. We have
also taken advantage of a telescope architecture which allows efficient use of the
available weight by designing deterministic load paths which results in non-com-
plex telescope interfaces. The secondary mirror focus mechanism range is dependent
on a number of error sources which have been identified. We have estimated that
the anticipated range is well within that currently available (e.g. Hubble Space
Telescope) and therefore does not represent a technology risk to the LUTE program.

After evaluating a number of telescope structural architectures we believe that a
telescope which uses an “inverted tripod” metering structure in concert with a
“single taper” primary mirror design can meet the stringent telescope sub-system
weight requirement of 84 kg even assuming a 18% weight contingency factor. Our
calculated telescope sub-system weight is 83 kg including this factor. By adopting this
design approach significant weight savings are realized in the areas of the telescope
light baffle and main bulkhead. This design concept not only meets the weight re-
quirement but meets the derived telescope fundamental frequency requirement of 2
50Hz. This design also affords us the ability to assemble and align the telescope sub-
assemblies “off-line” so that parallel integration activities can take place.

As mentioned in our previous LUTE study, the extreme tempetature range (+ 100 K)
over which the telescope must operate represents a significant challenge in terms of
meeting wavefront requirements. Assuming this temperature range the secondary
mirror focus mechanism should have a minimum despace range (i.e. travel along
the optical axis) of approximately +1 mm. As a point a reference, the HST focus
mechanism has a range of approximately £ 3 mm.

2-1
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SECTION 3

UVTA DESIGN DESCRIPTION AND
STRUCTURAL ANALYSES

3.1 STUDY LOGIC

The logic used to assess the structural design of the Ultraviolet Telescope Assembly
(UVTA) is shown in Figure 3.1. We relied heavily on the results from the MSFC
LUTE Interim Technical Assessment Report and the HDOS LUTE PM Material &
Design Study to formulate this logic. This included the assessment of the MSFC tele-
scope structural architecture in terms of both weight and fundamental frequency
performance. The results of the Hubble Space Telescope-like metering truss design
approach used in the MSFC baseline design were used as a benchmark and point of

departure for our study.

Based on prior programs such as the Orbiting Solar Laboratory (OSL) where we stud-
ied several structural forms for a 1-m telescope, we qualitatively knew the perfor-
mance of a “ring-stiffened” metering structure as compared to the HST type struc-
ture. We therefore focused our attention on two other meterin? structure designs.
The first was a metering bar approach where low coefficient-of-thermal expansion
(CTE) material is used to maintain PM-to-SM spacing while decenter errors are min-
imized via a set of axial and tangential flexures. This structural configuration allows
the use of high CTE material (e.g. beryllium) to be used for the load carrying

structure.

The other configuration we investigated we termed an “inverted tripod” design
where the secondary mirror assembly (SMA) is supported via a metering structure
which utilizes the “real estate” between the PM and tertiary mirror (TM). This de-
sign approach has a disadvantage in that the metering structure locally obscures a
small portion of the converging optical beam at three locations. This is in contrast to
a more conventional telescope design which utilizes a SM spider. However we have
qualitatively discussed these effects and have determined this design approach to be

acceptable.

Our assessments of these two configurations were done in a serial logic form. We
made calculations to assess the metering bar and went through the logic “gate” on
whether this design option was warranted for further study. We concluded that
with the baseline beryllium optics which we recommended in the PM Design Study,
a metering design approach to the LUTE telescope did not display any advantages
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Figure 3-1. Telescope Structural Configuration Trades Conducted in Order to Meet Strawman
Set of Requirements.
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(this is discussed further in Section 4). We therefore assessed the inverted tripod de-
sign and concluded that, to first order, this design will meet the optical performance,
weight and fundamental frequency requirements shown in Table 3-1.

TABLE 3-1
A CONSISTENT SET OF REQUIREMENTS HAVE BEEN
MAINTAINED THROUGHOUT THE LUTE STUDIES

* Optical Design e 3 mirror telescope
¢ Diffraction limited @ 0.63 pm

¢ 1 meter diameter C.A.
e Operating W.L. = 0.1-0.35 pm

¢ Telescope Weight °e<84kg
e Operating Temperature Range ® 260K - 60 K
¢ Fundamental Frequency e Telescope: > 50 Hz

e Primary Mirror: > 150 Hz

The inverted tripod design “cut-away” isometric layout is shown in Figure 3-2.
There are several design features worth noting. The first is the ability of this design
to meet its weight allocation of <84 kg. This is possible because o the significant
lightweighting possible of the telescope main bulkhead which acts as both the tele-
scope “backbone” along with the interface structure for the telescope hexapod actua-
tors. This lightweighting is made possible only by the implementation of the single
taper PM design. This PM design locates the PM mirror mounts at the inner hole ID
and therefore the main bulkhead top faceplate can be relatively small in diameter.
The second weight benefit of the inverted tripod design is that the telescope light
shade is no longer a load carrying structure. It does not need to support the 10.5 kg
SMA but only its self weight.

Sections 3.2 through 3.6 will describe each of the major sub-assemblies and/or com-
ponents and give results of weight calculations, fundamental frequency and “first
order” stress calculations due to launch vehicle ascent loads. We summarize the
UVTA telescope weight estimate with particular attention to the weight associated
with the “structural” components.

3.2 PRIMARY/TERTIARY MIRRORS

During our LUTE PM Study we tentatively concluded that an integral PM/TM de-
sign was preferable. Consultations with our optical fabrication personnel indicated
that in fact the fabrication of this mirror is feasible.

3-3
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Based on the decision to baseline the inverted tripod metering structure design we
have reassessed our original conclusion. Aside from the configuration decision
there is a weight penalty associated with an integral PM/TM design. For our single
taper mirror design with an inner “hub” thickness of 25 mm, the weight of the por-
tion of the mirror which is a “non-optical” (i.e. an annulus with an OD = 474 mm
and an ID of 306 mm) is approximately 5 kg. Assuming the weight allocation of 2.3
kg for the PM mounts would be adequate to accommodate both this increased
weight and the weight of the TM, a savings of 0.9 kg would be realized because the
TM mounts would no longer be required. The net weight increase to the telescope
system would be 4.1 kg, or an increase of 6%.

Figures 3-3 and 3-4 are the LUTE primary and tertiary mirror layouts. The PM is
supported by three sets of bipod flexures fabricated from titanium with a thickness of
25 mm and a width of 12 mm. The TM is supported by a similar set of flexures. Both
mirrors are fabricated from beryllium and each slightly oversized to accommodate
edge rolloff effects and beveling during fabrication. We have assumed 10 mm mar-
gin for rolloff and 3 mm for beveling (both on the radius). The weights are 22 kg and
3 kg for the PM and TM, respectively.

NASTRAN analyses of these mirrors indicate their frequency requirements are met
with margin. These requirements are specified in Table 3-2. Assuming a fixed base,
three point attachment to the mirror, the fundamental frequency of the PM and TM
are 260 and 1950 Hz, respectively. The hand-calculated maximum stress levels in the
mirror assuming a 15 g rms ascent load with factors of safety (FOS) of 1.25 and 1.5 for
yield and ultimate are 2700 and 800 psi, respectively.

Our PM design is of a similar form of that which HDOS fabricated and which was
subsequently cryo tested at Ames Research Center (ARC) in the 1987-1988. That mir-
ror, fabricated from optical grade I-70A hot isostatic pressed (HIP) beryllium was a
0.5 m diameter optic with an areal density of 28 kg/ m?2 and was tested at 80 K and 8
K. The room temperature (293 K) figure was ~0.06 waves rms @ 0.6328 um and the
cryo distortion transitioning from 293 K to 80 K was 0.21 waves rms.

3.3 SECONDARY MIRROR ASSEMBLY (SMA)

The SMA is composed of the secondary mirror (SM), a set of actuators to provide 5
degrees-of-freedom for the SM, a SM hub which reacts the loads imparted to the SM,
and the SMA hub which is the main load carrying member of the SMA The SMA
hub also provides the interface to the metering structure. The SM baffle will be dis-

cussed in Section 3.4.

The SM design is essentially the same as we are using for the TM. That is, a HIP'd
beryllium meniscus mirror with a thickness of 12 mm with the same “overage” to
account for rolloff and beveling. “Pockets” at three locations on the rear or “R2” sur-
face of the mirror allow the mirror to be supported as close to its center-of-gravity
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TABLE 3-2
FUNDAMENTAL FREQUENCY REQUIREMENTS BASED ON GROUND
TESTING DIAGNOSTICS AND SPRING-MASS COUPLING

* Lute Telescope 50 Hz
* Primary Mirror Assembly 100 Hz

* Primary Mirror 150 Hz
* Main Bulkhead 500 Hz
e Secondary Mirror Assembly 300 Hz
* Secondary Mirror 800 Hz
* SM Hub 500 Hz
* SM Delta Frame 500 Hz
* Metering Structure 60 Hz
e Tertiary Mirror Assembly 500 Hz
* Tertiary Mirror 1000 Hz

(CG) as possible via 3 sets of bipod flexures. Additional bending moments during as-
cent would cause the flexures to be heavier if we didn’t employ these “pockets.” A
calculated first mode of 1045 Hz and a stress level of 6100 psi meets the
requirements.

The SM hub and delta frame are both lightweighted designs which utilize a square
core structure sandwiched between two faceplates that are 1.5 mm thick with an
overall thickness dimension of 19 mm. This same type of construction was used on
a number of components on the Visible/Ultraviolet Experiment telescope which
flew in the late 1980’s. The construction technique used to fabricate these sections
was to EDM (electro-discharge machine) a number of small diameter holes in the
faceplates and core structure and to lock wire them together during the brazing op-
eration. The wires were removed after the brazing operation. Figure 3-5 is a photo-
graph of the forward end of the VUE telescope showing two lightweighted bulk-
heads which are nominally 50 mm in depth. Brazed connection between the bulk-
heads and other telescope structure can also be seen along with local inserts in the
core structure to accept threaded connections. Hand calculations to determine the
fundamental frequency of the two LUTE 19 mm deep lightweighted structures show
that the 500 Hz first mode requirements are met (800 and 725 Hz for the hub and

frame, respectively).

3.4 BAFFLES

All of the UVTA baffles are fabricated from aluminum. We considered issues such
as material size availability, the baffle not being a load carrying member (except its

own self weight) and ease of fabrication when determining these designs. For in-
stance, the main baffle could not be fabricated from a single sheet of beryllium.

3-8
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The main baffle is nominally 1120 mm in diameter and 960 mm in length. Its con-
struction is a ring-stiffened structure with a wall thickness of 0.4 mm. Internal vanes
which are 25 mm deep are attached to this shell and act as both structural stiffeners
and stray light control vanes. Figure 3-6 is the NASTRAN modal analysis of this
structure which shows a first bending mode frequency of 230 Hz and weight of 5.9
kg. This weight is slightly higher than the original estimate of 4.1 kg and is due to
the further definition of the packaging requirements of the SMA.

Both the SM baffles are of similar construction to that of the PM baffle. Aluminum
is again used for both SM baffles which are truncated cones with vanes located on
the OD and ID. These baffles are attached the SM delta frame through a series of
pinned and bolted joints. The combined weights of both of these structures is 2.1 kg.

The central baffle (primary baffle) has two functions. It's first function is to act as a
stray light control component. We again have kept it's shell thickness the same as
all other UVTA baffles. However this baffle also aids in the stiffening of the meter-
ing structure. In order to decrease the effective cantilevered length of the metering
structure and thereby increase its natural frequency, we’ve connected the central baf-
fle to not only the main bulkhead top faceplate but also the beryllium tubes which
form part of the metering structure. As will be discussed in the next section, this
ucloses” the metering structure on its ID while a second stiffening shell, considered
part of the metering structure assembly, “closes” the structure on its OD.

3.5 METERING STRUCTURE ASSEMBLY

Our inverted tripod structure takes advantage of the annular region between the PM
ID and TM OD to package the metering structure. This structure is connected to the
main bulkhead via an interface flange which is pinned and bolted to the top face-
plate. Our current concept for this design is to utilize 6 beryllium tubes that are 34
mm in diameter with a wall thickness of 2.5 mm. These six tubes extend from the
main bulkhead interface flange in a slightly canted orientation (i.e. the origin of the
term “inverted”) to a point approximately 240 mm from the main bulkhead inter-
face. Three of the six structural tube members are terminated at this location to min-
imize distortion at the image plane due to this obscuration. The three members that
are terminated are “capped” with three sections of an annular ring. These sections
are brazed to the top of the members and to the periphery of the three structural
members which continue up to the SMA. This adds significant rigidity to the struc-
ture. To further add stiffness of this structure an outer shell is attached to all six tube
members. By designing this structure in this fashion the effective cantilevered

length of the metering structure is significantly reduced.

NASTRAN analysis of this structure has been completed. Assuming that the can-
tilevered length is approximately 560 mm (the distance from the termination of
three metering structure tube members to the SMA support location), and using the
SMA calculated weight estimate of 7.2 kg, our analysis shows the first bending

3-10
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mode of the metering structure is 65 Hz. The first torsional mode of this structure is
104 Hz. The 60 Hz derived requirement is satisfied with this design approach and
therefore we feel comfortable that ascent and lunar performance can be achieved.

The total weight of this structure is 2.2 kg which includes the weight of the 3 short
and long beryllium tubes, the 3 annular ring “caps”, the main bulkhead interface
flange, and the 240 mm long metering structure closure cylinder. The “caps” and the
interface flange are both 2.5 mm thick while the truncated cylinder is 1.3 mm thick.
Hand stress analysis show that tube stress levels are low. A calculated stress of 9200
psi in a tube is well within the nominal values for yield and ultimate failure criteria

for extruded beryllium structural shapes.

3.6 MAIN BULKHEAD

Our main bulkhead design is one of the major reasons why we feel that the 84 kg
telescope weight requirement is .feasible. To develop this concept we combined the

fact that the PM single taper design requires its mounts to be located near its central
hub and that the telescope main baffle must only be self supporting.

Lightweighting of this structure is evident. Minimization of weight is accomplished
through the use of lightening holes and cutouts. Shear panels, which “beam” the
loads from the top to bottom faceplates and then transfer these loads to the telescope
hexapod actuators utilize these techniques. Three plates connecting the six shear
panels have been designed to maintain structural stability while adding structural
stiffness to the main bulkhead. These plates also have been lightweighted via
ucutouts”. The telescope main baffle only requires connection to the lower face-
plate/shear panel locations at six locations due to its low weight. Local “L” brackets
are used to make this connection through the OD of the main baffle. Where the
main baffle is not connected to these six locations, non-load carrying secondary
structure is used to control contamination and reflections off the lunar lander
and /or surface. To facilitate PM and TM alignment, six local raised pads are located
on the top faceplate of the main bulkhead. This allows tight tolerances to be main-

tained over a relatively small area.

The bulkhead is fabricated from beryllium, There are 3 “field 'splices” of the larger
faceplate because of manufacturer limitations on maximum available size. These
splices occur directly over three of the shear panels. All main bulkhead plate thick-
ness are nominally 2.5 mm. Faceplate, shear panels and plates are brazed together to
make a continuous, rigid, and deterministic structure. We used hand calculations to
show that a first mode of 870 Hz and a maximum stress level of 5200 psi suggests

this design is robust. We believe that more detailed analysis would continue to
show this design meets its requirements.

3-12
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3.7 WEIGHT ESTIMATES

The UVTA telescope weight estimates for the HDOS strawman design is shown in
Table 3-3. This weight estimate reflects the updates to the original design concept use
in the PM Materials & Design Study in terms of the metering structure, main bulk-
head, baffles, and SMA. No attempt was made to assess the original allocations
made to the electronics, alignment sensor and thermal control.

We have concluded that the original “structural” weight allocations are reasonable
and except for some redistribution of weight, our original estimates were reasonable.
There appears to be no outstanding issues with respect to launch survivability or
dynamic characteristics which would indicate that these estimates will significantly

increase.

3-13
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TABLE 3-3

PR D15-0015

LUTE CALCULATED WEIGHT ESTIMATES COMPARED TO ALLOCATIONS
AND ASSESSED TO DETERMINE TELESCOPE FEASIBILITY

Major Element

1) Mirrors

2) Structure

3) Electronics

4) Thermal Control

5) Alignment Sensor

Sub-Ass'y/ Weight Calculated
C I . .
Primary 218 21.8
Secondary 27 27
Tertiary 14 14
Sub-Total: 259 259
Baffles:
Main 4.1 5.9
Primary 0.9 0.9
Secondary (18] 2.1
Sub-Total: 5.5 8.9
Mirror Mounts:
PM 22 0.9
SM 14 0.7
™ 09 07
Sub-Total: 45 23
Main Bulkhead S. Ass'y:
Main bulkhead 54 6.8
§/C 1/F fittings (3) 14 14
Sub-Total: 6.8 8.2
Metering Struc. S. Ass'y:
Metering structure 13 15
I/F fittings (6) 13 0.7
Sub-Total: 2.6 22
SM Sub-Assembly
Spider 1.8 0
Spider flexures 14 0
Delta Frame 14 13
Hub 14 14
Actuators 27 27
Cabling 18 1.8
Sub-Total: 10.5 7.2
ACE 12 12
TCE 12 1.2
DMS 12 1.2
ASE 12 12
Sub-Total: 4.8 4.8
Heaters 0.9 0.9
Thermocouples 0.9 0.9
MLI 15 1.5
Cabling 20 20
Sub-Total: 53 5.3
Sensor 35 3.5
Sensor mount 0.5 0.5
Sub-Total: 4.0 4.0
Total (w/o reserve):  69.9 68.8
Reserve: 14.1 139
TOTAL: 84.0 82.7
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SECTION 4

PRIMARY-TO-SECONDARY MIRROR
DESPACE PREDICTIONS

41 THERMALLY INDUCED

Early in the study we traded metering structure design options. Using the work
completed and documented in the MSFC “LUTE Interim Report” with respect to the
Hubble Space Telescope (HST) type metering truss design, we investigated two addi-
tional types of structures. The first is a metering bar design approach where low coef-
ficient-of-thermal expansion (CTE) material (i.e. fused quartz) is used to maintain
the spacing between the primary and secondary mirrors in the presence of bulk
temperature changes. This design approach is beneficial when considering a tele-
scope design whose bulk temperature change, about some mean, is relatively small.
This design approach possibly allows the elimination of the secondary mirror adjust
mechanism thereby saving weight and reducing telescope complexity. Our “LUTE
Primary Mirror Materials and Design Study Report”, PR D15-0013A, discusses addi-
tional aspects of this design and includes a schematic of how this design approach
could be implemented.

Based on the weight allocation of 84 kg for the telescope assembly, we concluded that
the material of choice for LUTE is beryllium. This being the case, we calculated the
amount of PM-to-SM despace if we assumed an all beryllium telescope and a tele-
scope assembly temperature of 293 K (i.e. room temperature). These calculations also
assumed that the mean temperature of the operational LUTE is 160 K with a range
of temperature about this mean of + 100 K. We used the data included in PR D15-
0013A to account for CTE as a function of temperature. The calculations are as fol-
lows using the primary mirror as the reference.

¢ Beryllium structure:
(AL) mean-to-cold = {(AL) for 160K - 60 K} = 130 um
(AL) mean-to-hot = {(AL) for 160K - 260 K} = 487 pm

Therefore for beryllium, the worst case is for the mean-to-hot case when the PM-to-
SM spacing “grows” by 487 um. However for a telescope which uses the same mate-
rial throughout its optical “train”, the telescope is athermalized. What is implies is
that even though the spacing has changes by 487 um, the radius of curvature of the
primary and secondary mirror has changes by the same ratio. Therefore by defini-
tion, the wavefront error is identically zero (of course due to material inhomo-
geneities it is not identically zero.)
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When we considered the metering bar approach several issues were immediately
evident. First was that the temperature “swings” of the telescope is measured in
“100’s” of degrees not “a few degrees” which we typically would anticipate when
considering a metering bar design and secondly, the optics are beryllium, not the
more conventional “glass” optics where radius of curvature matching with “glass”
metering rods could be accomplished. As a example of why a metering rod approach

is not appropriate for LUTE, we continue similar calculations as shown above.

¢ Fused quartz metering rods:
(AL) mean-to-cold = {(AL) for 160K - 60 K} = 36 pm

(AL) mean-to-hot = {(AL) for 160K - 260 K} = 13 um

These calculations show that even though the relative motion between the mirrors
is much less, this motion obviously does not match the corresponding radius of
curvature changes that the beryllium mirrors undergo. If the mirrors were fabri-
cated from fused quartz (it is our opinion that this could only happen if the tele-
scope weight allocation of 84 kg was significantly relaxed), then an assessment of the
wavefront errors caused by the uncertainty of these values (remember material in-
homogeneities, etc.) would need to be undertaken.

We made similar calculations to assess the impact of axial (i.e. along the telescope’s
length) temperature gradients on telescope performance. In this case, a telescope
which uses the same material for both the structure and the optics does not neces-
sarily enjoy any benefit when considering thermally induced deformations. This is
shown in the Table 4-1 were we calculated allowable telescope axial temperature
gradients to meet the PM-to-SM alignment requirement of 0.0212 waves rms (@
0.6328 pm) due to lunar day-to-night changes as shown in PR D15-0013A. These re-
sults show that for axial temperature gradients, the all beryllium telescope will re-
quire a focus mechanism based on our understanding of the thermal analysis results
presented in the MSFC report which suggests that the telescope axial gradients will
be in excess of the 0.3K allowed. Conversely, a large benefit would be realized if the
fused quartz metering bar design was chosen based on the allowable axial gradient.
However as discussed, the PM-to-SM separation due to bulk temperature results
clearly shows that LUTE is not suitable for the metering bar approach.

We did not conduct a LUTE-specific optical sensitivity analysis. In lieu of this we
scaled sensitivity results from a similar three mirror telescope design. These sensi-
tivities are shown in Table 4-2. We recommend that further work be undertaken to
determine the specific optical sensitivities and that further analysis on PM-to-SM
decenter (i.e. motion perpendicular to the optical axis) and relative tilts between the
two elements be considered when bounding the allowable temperature gradients.
From the results presented above we believe our inverted tripod design approach
for the LUTE metering structure is appropriate.
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TABLE 4-1
A MATERIAL WITH A LOW CTE OVER THE ENTIRE OPERATING TEMPERATURE
RANGE IS PREFERRED SO THAT WAVEFRONT DISTORTIONS CAUSED
BY TELESCOPE AXIAL TEMPERATURE GRADIENTS ARE MINIMIZED

Operating Allowable Axial Temp Gradient (K)
Temp (K Beryllium Fused Quartz
260 0.3 30
160 - -
60 1.5 4
TABLE 4-2

SCALED RESULTS FROM A SIMILAR OPTICAL DESIGN WERE USED
TO CALCULATE ALLOWABLE TELESCOPE AXIAL
TEMPERATURE GRADIENTS

Secondary Mirror Wavefront Distortion Sensitivity
Motion (waves rms @ 0.6328 um)

e 1 um despace 0.02

¢ 1 um decenter 0.004

e 1 arcsec tilt 0.017

4.2 SECONDARY MIRROR FOCUS MECHANISM RANGE

To assess the precise amount of despace motion which the telescope must accom-
modate, a number of analyses and/or tests must first be conducted. These include:

a) LUTE-specific wavefront error sensitivity analyses
b) Metering structure material AL/L characteristics:
1) uncertainty
2) repeatability
3) homogeneity
¢) Assembly misalignments
d) Launch induced misalignment
e) Exact operational bulk and temperature gradients
f) 5/6’s g release
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We have attempted to begin this assessment assuming an all beryllium telescope
which is aligned and tested in 1g at 293 K. These results are shown in Table 4-3.
These values should be considered as a preliminary assessment which will need to
be updated as the LUTE specific warchitecture” in terms of structural form and mate-

rial choice is baselined.

One must apply considerable margin to account for the error sources shown in Table
4-3 which are “tbd.” We believe the LUTE secondary mirror mechanism should
have a minimum despace range of 1 mm. For reference, the HST SM mechanism

has a despace range of approximately 13 mm.

TABLE 4-3
IDENTIFICATION OF DESPACE ERROR SOURCES HAVE BEEN MADE.
ADDITIONAL ANALYSES AND TEST DATA REQUIRED TO FULLY
QUANTIFY THESE EFFECTS ON OPTICAL PERFORMANCE

Despace Error Estimated Despace Equiv. Defocus
Source Motion (um) Error (waves-rms)
o Initial misalignment 0.4 0.008
* 5/6 g release uncertainty 0.3 0.006
e Launch residual tbd tbd
e Bulk temp. effects
-260 K to 160 K 490 0
-160 K to 60 K 130 0
¢ Temp. gradients
- PM, SM, TM tbd tbd
- Metering structure tbd tbd
o AL/L effects
- PM, SM, TM tbd tbd
- Metering structure tbd tbd
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SECTION 5
MECHANICAL LAYOUTS

51 OVERALL UTVA

Our recommended LUTE telescope design described in detail in Section 3 is based on
a set of requirements which dictates that the telescope have diffraction limited per-
formance while at the same time be light weight and structurally stiff. Shown earlier
in Figure 3-2, the isometric view of our telescope highlights the major telescope
components which we believe will meet this set of requirements.

Figure 5-1 is an “exploded” view of the telescope providing further definition of its
components, the material which the component is fabricated from, insight into the
fabrication technique which we recommend for its construction, and other pertinent
information to help in the overall understanding of form and function. Figures 5-2
and 5-3 provide the more classical “side” and “top” views of the telescope. These
figures are “to scale” to show that all components are consistent with volume con-
straints and that no interferences occur which could jeopardize the overall telescope
architecture.
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Figure 5-1. The "Exploded" View of the Lute Telescope Provide Insight into
Assembly Sequences along with Material and Fabrication Techniques.
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Figure 5-2. “Side” View of the Lute Telescope.
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Figure 5-3.
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SECTION 6
RECOMMENDATIONS

Our current investigation of the feasibility of the LUTE telescope substantiates the
conclusions from our pervious LUTE study. That is, no areas have been identified
that would indicate that the LUTE mission is not feasible. However, development of
an ultra-lightweight, 1-m class telescope with visible wavelength diffraction-limited
performance for operation across a temperature range of 60 - 260 K would undoubt-
edly prove to be very difficult. Following are some additional tasks and/or tests
which warrant attention in the overall development of the telescope sub-system.

1) Use of other launch/lander vehicles could impact the conclusions made in
our LUTE studies. A revisit of these studies is warranted if allowable telescope
mass is significantly increased from 84 kg.

2) Sub-scale material testing of beryllium to quantify homogeneity as a function
of location. Fabricate a full scale primary mirror blank, remove small sections
and conduct CTE measurements as a function of temperature. Repeat these
tests several times to extract repeatability data. Literature searches along with
obtaining vendor information would complement this task.

3) Design and fabricate a brassboard (i.e. non-flight unit) of the LUTE telescope to
investigate:

a) thermally induced deformations of the telescope sub-system over the an-
ticipated operating temperature range.

b) simulate lunar “dust” applied to the telescope optical surfaces and corre-
late encircled energy degradation as a function of dust “buildup” with op-
tical performance modeling.

4) Topics included in our previous study report:

a) UV scatter measurements on small (3-5 cm diameter) polished and coated
beryllium mirrors.

b) Analysis of the candidate PM materials to identify the optimum tempera-
ture range for each material to achieve its optimum wavefront perfor-
mance.

¢) Conduct optical analyses to:
e support a re-evaluation of the existing wavefront error allocation to
check its suitability for a UV telescope.
¢ determine mirror alignment sensitivities in support of the concept to
fabricate the TM on the same substrate as the PM.
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APPENDIX A
LUTE VIEWGRAPHS FROM 4 MAY 1993 TECHNICAL TELECON
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